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Abstract

In this paper we provide a model of dynamic oligopoly in which �rms take into account

the �nancial constraints of all �rms. The study of the equilibria of our dynamic game leads

to the concept of Bankruptcy-Free outputs (BF) in which no �rm can drive another �rm to

bankruptcy without becoming bankrupt itself. For a duopoly with su¢ cently patient �rms all

equilibria yield BF outputs. When there are more than two �rms, outputs other than BF can

be sustained as equilibria but the set of BF outputs is still useful in explaining the shape of the

equilibrium set. Cournot one-shot equilibrium and joint pro�t maximization are more di¢ cult

to sustain as equilibria of our game than under the standard repeated games.
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1. Introduction

There is ample evidence that �nancial constraints play an important role in the behavior of �rms

(Bernanke and Gertler, 1989; Kiyotaki and Moore, 1997). We begin with the observation that the

punishment for violation of a �nancial constraint must be severe or otherwise �rms would default

all the time. Suppose that the punishment is so severe that �rms violating �nancial constraints

lose the capacity to compete and disappear (Sharfstein and Bolton, 1990).1 Firms might then

have incentives to take actions that would make it impossible for competitors to ful�ll �nancial

constraints in the hope of getting rid of them.

In this paper we provide a model of dynamic oligopoly in which �rms take fully into account

the �nancial constraints of all other �rms and not only their own �nancial constraints. To simplify

our task we make two assumptions: pro�ts cannot be transferred from one period to the next and

the �nancial constraint in each period requires that pro�ts must be non-negative in each period.

The second assumption entails just a normalization of pro�ts. However, the �rst assumption is not

innocuous and is discussed later on.

The study of the equilibria of our dynamic game leads naturally to the concept of Bankruptcy-

Free outputs (BF in the sequel). This is the set of outputs in which pro�ts for all �rms are not

negative (so no �rm goes bankrupt) and no �rm can make another �rm bankrupt without becoming

bankrupt. The concept of BF captures the opportunities for ruining other players that exist in

our set up but are not captured by standard concepts such as Cournot equilibrium. Moreover

Cournot equilibrium may be not BF . Thus consider a market with two �rms in which a �rm has a

better technology, but both produce a positive output in Cournot equilibrium. These outputs are

not BF if the most e¢ cient �rm can produce an output for which its pro�ts are zero and pro�ts

for the ine¢ cient �rm are negative. Why would a �rm like to make such a move? Because in a

dynamic game this move gets rid of a competitor so if the e¢ cient �rm is very patient this move

will pay o¤ in the future. This implies that the use of trigger strategies in our framework is limited

because reversion to Cournot output does not guarantee that �rms have incentives to stay there.

However when the Cournot equilibrium is BF it can always be supported as a Subgame Perfect

Nash Equilibrium (SPNE) of the dynamic game for any discount factor.

1Even though �rms can be reorganized after bankruptcy and continue business, the survival rate of �rms after

bankruptcy is typically low, 18% US, 20% in UK and 6% in France, see Couwenberg (2001).
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In general, for the duopoly case when �rms hardly discount the future, any NE must yield BF

outputs. This result highlights the di¤erence between our approach and the standard repeated

game in which when the discount factor is su¢ ciently close to one, any individually rational payo¤

equals the average payo¤ of some SPNE. Thus, the consideration of bankruptcy has a bite because,

in some cases, it makes it impossible to sustain as equilibria of the dynamic game some well-known

solution concepts like Cournot equilibrium.

The interaction among more than two �rms is richer and non BF outputs can be supported as

NE. This is because there are strategies which prescribe collusion when �rms that might have gone

bankrupt are active in the market and prescribe, say, Cournot outputs (whenever they are BF )

when a �rm has gone bankrupt (so, once �war�has been fought, the surviving agents do not trust

each other anymore and thus rendering collusion impossible).

Nevertheless, since no �rm goes bankrupt in equilibrium, for a given discount factor, any NE

outcome of our game can be sustained as an NE outcome of a game without bankruptcy consider-

ations2. Thus the consideration of bankruptcy does not bring new outputs that can be supported

as equilibrium with respect to those that can be supported in standard repeated games. This is

good news in the light of the large multiplicity of outputs that can be sustained as equilibria in

the standard repeated game when �rms hardly discount the future. An implication of this result

is that sustaining collusion does not become easier (and in some cases it becomes more di¢ cult)

when we take bankruptcy into consideration.

In order to continue our exploration we make the additional assumption that the technology is

characterized by increasing average costs. Our aim is to characterize the average payo¤s that can

be sustained as SPNE when discount is small.3 The concept of minimax payo¤ plays an important

role here (as in the folk theorem for repeated games) but it has to be adapted because minimaxing

�rms may become bankrupt as a consequence of their own action. We de�ne a new concept, the

minimax BF , where the min and the max operators are taken over the outputs that are BF . We

show that any BF output pro�le that gives a payo¤ greater than the minimax BF payo¤ can be

supported as an SPNE and that payo¤s less than the minimax BF payo¤ cannot be sustained in

2This result can be strengthened to the consideration of subgame perfection under the additional assumption that

only trigger strategies are used.
3Recall that under no bankruptcy, any individually rational payo¤ can be achieved by the average payo¤ of an

SPNE (the folk theorem).
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any SPNE for a discount factor close to one. Thus the failure of Cournot to be supported as an

equilibrium can be traced to Cournot pro�ts being smaller than minimax BF for some �rm. Also,

joint pro�t maximization could yield ouptputs that are BF but with payo¤ below the minimax BF

payo¤. Thus, in those cases, joint pro�t maximization can not be supported as an SPNE.

We end this introduction with a preliminary discussion of the literature (see more on this in

the �nal section). Although a number of papers demonstrate that the �nancial structure does

a¤ect market outcomes in oligopoly, most previous studies adopt either static or two-stage models.

Kawakami and Yoshida (1997) and Spagnolo (2000) are two exceptions. Both papers make use

of repeated games like ours. The former incorporates a simple exit constraint into the repeated

prisoners�dilemma. In their model, each �rm must exit from the market no matter how it plays

if the rival deviates over a certain period of time. Fixing the length of such an endurable period

of time intrinsic to each �rm, they show that predation can occur when �rms hardly discount

the future. The latter study examines the role of stock options in repeated Cournot games. In

that model, unlike standard repeated games, �rms do not necessarily maximize average discounted

pro�ts because stock options a¤ect managers�incentives. Considering this e¤ect, Spagnolo (2000)

shows that collusion is easily achieved.

2. The model

There are n �rms. They play a dynamic game with in�nite horizon and discounting. In each period

�rms play a constituent game where they simultaneously choose quantities. In order to focus in

the strategic decisions regarding outputs we assume that �rms cannot accumulate pro�ts. We also

assume that �rms become bankrupt as long as they have negative pro�ts in a period, and when

they do so, they disappear from the market. When making its quantity decision in period t, each

�rm knows what any �rm has produced in all previous periods and which �rms became bankrupt.

The constituent game

Each �rm, say i, produces a unique output denoted by xi. Let the aggregate output
Pn
i=1 xi be

denoted by X. Vectors are denoted in boldface. Let x = (x1; ::; xi�1; xi; xi+1; ::; xn) be an output

pro�le: Let x�i = (x1; ::; xi�1; xi+1; ::; xn): Thus x = (xi;x�i). The product is homogeneous. Let

pi(X) be the inverse demand function for �rm i assumed to be strictly decreasing in X for any

positive price. Let ci(xi) be the cost of producing xi for �rm i with ci(0) = 0: The average cost of
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producing xi is denoted by AV Ci(xi). Pro�ts for any given �rm i are de�ned by �i � pi(X)xi�ci(xi)

and written as �i(x) or sometimes �i(xi;x�i). We assume that pro�ts for any �rm are a concave

function of its own output.

The in�nite horizon dynamic game

In each period, say t, each �rm chooses an output denoted by xti: Let x
t be a pro�le of outputs

in period t. The payo¤s obtained by �rm i in period t are �i(xt) t = 0; 1; ::::; � ; :::. Firms cannot

accumulate pro�ts, and hence they become bankrupt as long as they have negative pro�ts in a

period. Once a �rm is bankrupt produces zero output in all subsequent periods. Let � 2 (0; 1) be

the common discount factor. Payo¤s for �rm i are Pi =
P1
t=0 �

t�i(x
t). The continuation payo¤

in period t is given by P ti =
P1
r=0 �

r�i(x
t+r). At period 0 the game begins with the null history

h0: For t � 1; let ht = (x0;x1; ::;xt�1) be the realized pro�les of outputs at all periods before t: A

strategy for �rm i; �i; is a sequence of maps, one for each period t; mapping all possible period t

histories to an output in period t: Let � = (�1; :::; �n) denote a strategy pro�le. A Nash Equilibrium

(NE in the sequel) is a collection of strategies from which no agent �nds it pro�table to deviate.

A Subgame Perfect Nash Equilibrium (SPNE in the sequel) is a collection of strategies which are

a NE in every possible subgame. Throughout the paper, we restrict our attention to pure-strategy

equilibria.

We say that a pro�le of outputs is Bankruptcy-Free if no �rm is made bankrupt and no �rm can

make another �rm bankrupt without going bankrupt itself. A motivation to focus on such outputs

is that they describe a long run equilibrium in an industry in which all �rms have incentives to

stay in the market and not to engage in predatory activities. Of course these activities might be

important but we look at the industry once the dust has settled and the predatory activities (if

any) have been done in the past. Formally,

De�nition 1. An output pro�le x̂ = (x̂1; x̂2; ::::; x̂n) is bankruptcy-free (BF ) if:

a) �i(x̂) � 0; for all i 2 f1; ::; ng.

b) For all xj such that �j(xj ; x̂�j) � 0; �i(xj ; x̂�j) � 0 for all i 6= j:

Note that if �rms are required to make vi � 0 pro�ts to avoid bankruptcy, we can de�ne a new

pro�t function as ~�i(x) � �i(x)� vi and rede�ne BF with respect to this new pro�t function.

To build intuition on the set of BF outputs, let us consider the following example.
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Example 1. Suppose there are two �rms with linear inverse demand p(X) = maxf1�X; 0g and

quadratic cost functions 0:1x21 and 0:04x
2
2. Pro�t functions are �1(x1; x2) = (1�x1�x2)x1� 0:1x21

and �2(x1; x2) = (1 � x1 � x2)x2 � 0:04x22. Let �x1 6= 0 and �x2 6= 0 be such that �1(�x1; �x2) =

�2(�x1; �x2) = 0. Writing �1(x1; x2) = (1 � 1:1x1 � x2)x1 and �2(x1; x2) = (1 � 1:04x2 � x1)x2, we

see that �x1 and �x2 are the intersection of the functions x2 = 1� 1:1x1 (the solid line in Figure 1)

and x1 = 1� 1:04x2 (the doted line in Figure 1). These outputs are represented by the thick lines

in Figure 1 and amount to �x1 = 0:277, �x2 = 0:694:

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

x1

x2

Figure 1

We �rst show that the set of BF outputs is the rectangle [0; 0:277]�[0; 0:694]. For instance a pair of

outputs (0:5; 0:25) are not BF because �rm 2 can produce x2 = 0:46 and yield pro�ts of �1 = �0:005

and �2 ' 0:001. The same argument holds for any pair of outputs in the triangle de�ned by the

solid and the dotted line and the x2 axis in the upper left corner of Figure 1. And what about

a pair of outputs in the aforementioned rectangle like (0:2; 0:2)? Note that the maximum amount

that, say, �rm 1 can produce without going bankrupt is :72 and �2(0:72; 0:2) = 0:014 4 we see that

it is impossible for �rm 1 to make �rm 2 bankrupt. This is easily seen in Figure 1 because setting

x2 = 0:2 an increase in x1 hits �rst the zero pro�t constraint of �rm 1 (solid line).

Note that the (unique) Cournot equilibrium outputs (0:302; 0:335) are not BF because 0:302 >

0:277.4 In particular �rm 1, by producing 0:302 is exposing itself to bankruptcy if �rm 2 produces

0:667 + � for suitably low values of �.

4Cournot equilibrium outputs solve the FOC of pro�t maximization, 1� x2 = 2:2x1 and 1� x1 = 2:08x2.
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There are several comments to Example 1. Firstly, note that the calculus of BF allocations

boils down to �nding a solution to the system of equations �i(�x) = 0. In fact this is a general

feature of markets with increasing average costs with two �rms (see Lemma 3 in the Appendix).

Secondly, outside the BF set a �rm can go bankrupt and this possibility has consequences for

the equilibrium of the dynamic game. In this example, the Cournot output pro�le is not BF: If

�rms hardly discount the future, a repeated play of the Cournot output in every period is not a

NE: For �rm 2; it pays to make �rm 1 go bankrupt and to get monopoly pro�ts from there on when

� > �C2 =�
M
2 ; where �

C
2 denotes �rm 2 Cournot pro�ts and �

M
2 denotes �rm 2 monopoly pro�ts. The

same argument can be applied to any output pro�le which is not BF: Moreover trigger strategies

cannot be used in this case because they rely on reversion to the static NE (Cournot output) which

is not the part of any NE of the dynamic game.

Thus, the consideration of bankruptcy discards a big chunk of outputs as equilibrium outcomes

of the dynamic game when the discount factor is close to one. This contrasts with the folk theorem

in standard repeated games where if �rms are su¢ ciently patient, any output yielding non negative

pro�ts (the intersection of the areas beneath the solid and the dotted lines in Figure 1) can be

sustained as an SPNE of the dynamic game.

The next section formalizes the intuitions above by studying the equilibria of the model and

exploring the role of BF in it.

3. Dynamic Competition with Bankruptcy

Let (xC1 ; x
C
2 ; :::::::x

C
n ) be an output pro�le corresponding to a Cournot equilibrium of the constituent

game, and �Ci be the pro�ts obtained by i in this Cournot equilibrium. Then we have the following:

Observation. Assume that the output pro�le corresponding to a Cournot equilibrium of the

constituent game is BF . Then:

(i) This output pro�le can be sustained as an SPNE of the dynamic game for any �:

(ii) When � tends to 1, a BF output pro�le that yield pro�ts larger than �Ci for all i; can be

sustained as an SPNE.

Proof. (i) From Fudenberg and Tirole (1991, p. 149) if (xC1 ; x
C
2 ; :::; x

C
n ) is an NE of the

constituent game, the repeated play of the static NE is always an SPNE of the repeated game when

there are no bankruptcy considerations. Since no player is bankrupt and there is no possibility of
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making other �rm go bankrupt because these outputs are BF , this strategy pro�le is an SPNE of

the dynamic game.

(ii) Let x =(x1; ::; xn) be a BF output pro�le that yield pro�ts larger than �Ci for all i. Consider

the following strategy for a generic player, say i. At period 0 play the output xi, and continue

to play xi so long as either (i) the output pro�le in the previous period was x or (ii) the output

pro�le in the previous period di¤ered from x in two or more components. In any other case play

xCi . By the usual reasoning such strategy pro�le is an SPNE when � is su¢ ciently close to one

and it yields the desired output pro�le in each period (as in Friedman, 1971).

The above observation requires that the set of BF outputs and the NE of the constituent game

have a non-empty intersection. This is not always the case, recall Example 1. 5

Our �rst result is an asymptotic result for two �rms. The result states that, when � is su¢ ciently

close to one, any NE of the dynamic game yields BF output pro�les in each period. Denoting

monopoly pro�ts for �rm i as �Mi , we have the following:

Proposition 1. Let n = 2. Let (x01; x
0
2; :::; x

t
1; x

t
2; ::::) be a sequence of outputs yielded by a NE

for any su¢ ciently large � and such that there is an � > 0 with �i(xt) + � � �Mi for all t = 0; 1; :::;,

i = 1; 2. Then, when � ! 1; (xt1; x
t
2) is BF for all t:

Proof. Suppose that in period t, (xt1; x
t
2) is not BF: Thus, one �rm could cause bankruptcy

to the other. Suppose, without loss of generality, it is �rm 2. Consider the following strategy for

�rm 2. In period t choose an output x2, that drives �rm 1 into bankruptcy and choose the output

corresponding to monopoly thereafter. In this case, the continuation payo¤ for �rm 2 is

�2(x
t
1; x2) + ��

M
2 + �2�M2 + ::::: (3.1)

The continuation payo¤ at t for the sequence (x11; x
1
2; :::; x

t
1; x

t
2; ::::) is:

�2(x
t) + ��2(x

t+1) + �2�2(x
t+2) + ::::: (3.2)

By the de�nition of an NE,

�2(x
t) + ��2(x

t+1) + �2�2(x
t+2) + :::: � �2(xt1; x2) + ��M2 + �2�M2 + :::: (3.3)

5Clearly, if �rms are identical the Cournot output pro�le is BF . More general conditions under which NE and

BF outputs have a non-empty intersection are available under request.
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or

�2(x
t)� �2(xt1; x2) � �(�M2 � �2(xt+1)) + �2(�M2 � �2(xt+2)) + :: � ��+ �2�+ :: = �

�

1� � : (3.4)

Clearly, when � converges to 1, the inequality 3.4 is impossible, contradicting that we were in

an NE.

The result is driven by the fact that a �rm producing an output outside the BF set will be

immediately "killed" because, in this case, crime pays since it means monopoly forever for the

killer. Proposition 1 needs two assumptions: �i(xt) + � � �Mi and that there are two �rms. We

discuss both points in turn.

Firstly we show by means of an example that without the condition �i(xt)+� � �Mi , Proposition

1 might fail because it might not pay to kill a �rm whose output shrinks quickly over time.

Example 2. Suppose a linear inverse demand p(X) = maxf20�X; 0g and two �rms with constant

average cost AV C1(x1) = 0 and AV C2(x2) = 4: Consider the following pair of strategies: �rm 2 , if

it is in the market in period t, produces xt2 = (0:5)
t regardles of what happened in the past so the

output of �rm 2 shrinks over time. Firm 1 produces x01 = 9:5; and for all t � 1; xt1 = (20� (0:5)t)=2

(the best reply to (0:5)t) if xt�r2 = (0:5)t�r for all r 2 f1; :::; tg; otherwise it produces xt1 = 16 (the

minimax strategy against �rm 1). We �rst notice that the output pro�le in every period is not BF

because in period t �rm 1 may produce for example 19 � (0:5)t and ruin �rm 2 without ruining

itself (at those outputs the price will be 1 which is below the average cost of �rm 2). We show that

for a su¢ ciently large � this strategy constitutes a NE of the dynamic game.

Consider �rst �rm 2. The best reply to x11 = 9:75; is 3:125 so if �rm 2 deviates in period 1 receives,

at most, (20 � 9:75 � 3:125 � 4)3:125 = 9:7656 in that period and the minimax payo¤ from there

on (in this model the minimax payo¤ is zero). If �rm 2 does not deviate, total output in period t

is (20 + (0:5)t)=2 and market price is (20� (0:5)t)=2. Thus �rm 2 discounted pro�ts are

1X
t=0

�t(
20� (0:5)t

2
� 4)(0:5)t = 10

(1� �(0:5)) �
1

2(1� �(0:5)2) �
4

1� �(0:5) ; (3.5)

which is increasing in �. For � ' 0:85 the expression in (3.5) equals 9:7656. Thus, for any � > 0:85,

�rm 2 does not have incentives to deviate in period 1. And deviations in subsequent periods will

be even less pro�table because the output of �rm 1 in these periods is larger than its output in

period 1.

9



Consider now �rm 1. If �rm 1 does not deviate, total output in period t is (20 + (0:5)t)=2 and

market price is (20� (0:5)t)=2. Thus �rm 1 discounted pro�ts are

1X
t=0

�t(
20� (0:5)t

2
)2 =

202

4(1� �) +
1

4(1� �(0:5)2) �
40

4(1� �(0:5)) : (3.6)

The only possible pro�table deviation for �rm 1 would be to make �rm 2 bankrupt and to produce

the monopoly output (which in this example is 10) from then on. If this deviation happens in period

1, given that �rm 2 is producing xt2 = 0:5; �rm 1 needs to produce slightly above the quantity that

makes price equal to the average cost of �rm 2 (which in this example amounts to 15:5):Thus,

pro�ts for �rm 1 will be, approximately, (15:5)4 = 62 in the �rst period and monopoly pro�ts

(�M1 = 100) in any subsequent period. Discounted pro�ts associated with this strategy are

62 + �
100

1� � : (3.7)

Let us see that
202

4(1� �) +
1

4(1� �(0:5)2) �
40

4(1� �(0:5)) > 62 + �
100

1� � ; (3.8)

or equivalently,

100 + �
100

1� � +
1

4(1� �(0:5)2) �
10

(1� �(0:5)) > 62 + �
100

1� � , (3.9)

38 +
1

4(1� �(0:5)2) �
10

(1� �(0:5)) > 0 (3.10)

Given that 1=(4(1� �(0:5)2)) > 0 and 10=(1� �(0:5)) < 20; the left hand side of the last inequality

is greater than 18 and therefore greater than 0. Thus, �rm 1 does not have incentives to make �rm

2 bankrupt in period 1. For subsequent periods, the output that ruins �rm 2 is larger and larger

with an upper bound of 16 and pro�ts for �rm 1 of, at most, 64. A similar argument to the one

used above shows that this deviation is not pro�table.

In Proposition 1 the assumption of two �rms is also essential. With more than two �rms, after

one �rm becomes bankrupt, the strategies of the remaining �rms may prescribe outputs which yield

less pro�ts than before, something that cannot happen in the duopoly case. Thus ruining a �rm

may have unfortunate payo¤ consequences despite the fact that it makes the market (apparently)

less competitive because there are less competing �rms. Therefore �rms may abstain from ruining

other �rms because this might not pay o¤. We now present an example in which after any deviation
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from a non BF collusive output, �rms revert to the Cournot equilibrium, which in the example is

BF; and thus the aforementioned output can be sustained as an SPNE.

Example 3. Let us consider a market with three �rms and an inverse demand function p(X) =

maxf10 � X; 0g. Firms have constant average cost such that ACV C1(x1) = AV C2(x2) = 0 and

AV C3(x3) = 4. The best reply functions are:

xi = maxf0;
10� ci �

P
i6=j xj

2
g; i = 1; 2; 3. (3.11)

The unique Cournot equilibrium output vector is (3:33; 3:33; 0) yielding pro�ts (10; 10; 0). These

outputs are BF because since �rm 3 does not produce we have a duopoly with two identical �rms

and outputs so the bankruptcy of one implies the bankruptcy of the other.

Now consider the vector of outputs (2:4; 2:4; 0:2) yielding pro�ts (12; 12; 0:2). These outputs are

not BF because, �rm 1 or �rm 2, can produce 6 units of output and make �rm 3 bankrupt. But

we will see that these outputs are yielded by an SPNE.

Now consider the following trigger strategies: x0i = 2:4; i = 1; 2; x03 = 0:2. If xt�ri equals the

previous outputs for all r 2 f1; 2; ::; tg and i 2 f1; 2; 3g; then each �rm produces the same output

than in perido 0: Otherwise xti = 3:33; i = 1; 2; x
t
3 = 0.

For � su¢ ciently close to 1, the previous strategies constitute an SPNE that generates outputs

xti = xJi for all t = 0; 2; :::; T; ::: and i = 1; 2; 3. The proof is virtually identical to that of the

observation at the beginning of the Section.

Thus, when n > 2 the outputs yielded by SPNE are not a subset of BF allocations. But the

concept of BF allocations plays an important role in the results in the next section.

To close this section, we show that the introduction of bankruptcy constraints reduces the

outputs which can be sustained as NE with respect to those sustained as an NE of a standard

repeated game for a given �.

Let �(�) be the in�nitely repeated constituent game without bankruptcy considerations when

the discount factor is �. Let �BC(�) be the game with bankruptcy constraints when the discount

factor is �.

We �rst prove that no bankruptcy occurs in NE. This is due to the fact that �rms can escape

bankruptcy by producing zero.

Lemma 1. No �rm goes bankrupt in any NE outcomes of �BC(�).

11



Proof. Suppose that �rm i goes bankrupt in some period t, which happens only if its pro�t

in t is negative. Since the pro�ts after bankruptcy are always 0, the i�s continuation payo¤ on t is

also negative. However, producing nothing at t assures 0 pro�ts, so �rm i can pro�tably deviate

by choosing xti = 0 on t. Thus we derive contradiction.

Note that the statement in Lemma 1 refers to Nash equilibrium (NE) outcomes. This implies

that bankruptcy never happens both on and o¤ the equilibrium path of any subgame perfect Nash

equilibrium (SPNE).

The next three propositions establish the connections between equilibria of �(�) and �BC(�).

Note that bankrupt �rms must choose zero output in �BC(�) while no such constraint is imposed in

�(�). This implies that equilibrium strategies after a history such that some �rm goes bankrupt in

�BC(�) must be di¤erent from those in �(�) unless producing zero output (by that �rm) happens

to be an equilibrium in �(�). That is, equilibrium strategies in two models usually fail to exactly

coincide. However, as the following propositions show, equilibrium outcomes, i.e., action pro�les

induced by equilibrium strategies, have strong connections.

Let us �rst show a benchmark result which connects SPNE outcomes of the repeated Cournot

game and those of our �nancially constrained model.

Proposition 2. Any SPNE outcome of �(�) is sustained by an SPNE of �BC(�) if every action

pro�le induced by the former equilibrium strategy (after any history) is BF.

Proof. Let � be an SPNE strategy of �(�) such that action pro�les induced by � after any

history are BF. Then, no �rm goes bankrupt if the �rms follow (equilibrium path of) � in �BC(�),

and each �rm cannot make its rival bankrupt by unilaterally deviating from that. This property,

combined with Lemma 1, implies that if some strategy �0i is a pro�table deviation for �rm i in

�BC(�), the same �0i must also be pro�table in �(�). However, by assumption, � is an SPNE in

�(�), so there is no such pro�table deviation in �(�). Therefore, as long as equilibrium path of �

is played in �BC(�), no �rm can pro�tably deviate, which completes the proof.

Roughly speaking, Proposition 2 states that an SPNE of �(�) also becomes an SPNE of �BC(�)

under the condition that the output pro�les on and o¤ the equilibrium path are all BF. This

proposition implies that introducing the possibility of bankruptcy does not change the SPNE if the

output pro�les induced by the equilibrium are BF.

12



If we focus on NE rather than SPNE, direct connection can be obtained. Note that, since our

equilibrium concept is NE, we no longer need to check whether equilibrium o¤-path strategies are

a Nash equilibrium of the relevant subgame.

Proposition 3. Any NE outcome of �BC(�) is sustained by an NE of �(�).

Proof. Note that a feasible output after any history in �BC(�) (i.e. any nonnegative output

if the �rm has not gone bankrupt until the previous period and zero otherwise) is always feasible

in �(�). This implies that, for any strategy � in �BC(�), its continuation payo¤s (both on and o¤

the equilibrium paths) can be completely replicated in �(�). Therefore, if � is NE in �BC(�), the

corresponding strategy in �(�) must also be NE.

Proposition 3 shows that any NE outcome in the model with bankruptcy can be sustained as

an NE in the model without bankruptcy. This means that the introduction of �nancial constraints

does not create new outcomes, which is good news given the multiplicity of outcomes that can be

sustained as NE in the Cournot repeated game.

Since SPNE outcomes are subset of NE outcomes, the following holds immediately.

Corollary 1. Any SPNE outcome of �BC(�) is sustained by an NE of �(�).

Let us now consider the situation in which repeated play of static NE, i.e., Cournot output,

constitutes SPNE in our �nancially constrained model no matter which subset of the �rms remains

active. Further, we assume that active �rms always employ trigger strategies as a punishment

device. Finally, we assume that pro�ts associated to Cournot outputs of any subset of �rms are

decreasing with the entry of a new �rm. This property holds under reasonable conditions which

include concave inverse demand and convex costs.6 Then, the following proposition holds.

Proposition 4. Any SPNE outcome of �BC(�) sustained by the trigger strategy is also sustained

as an SPNE by the trigger strategy in �(�).

Proof. Since the individual payo¤ (of any active �rm) associated with Cournot output weakly

increases as the set of active �rm shrinks, the static equilibrium payo¤ is weakly larger when

the market becomes less competitive. This implies that punishment payo¤ achieved by a trigger

6See, for example, Proposition 2 in Corchón (1994) and the references therein about previous work.
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strategy in �BC(�) (depending on which �rms are active) must be weakly higher than that in �(�),

since all �rms are trivially active in �(�). Therefore, if no deviation is pro�table (against the trigger

strategy) in �BC(�), it must also be the case when no �nancial constraint is imposed, because the

punishment induced by the trigger strategy becomes severer in �(�).

This proposition implies the following.

Corollary 2. For any output pro�le x, the set of discount factors under which trigger strategies

sustain x is (weakly) larger in a game without �nancial constraints than in the same game with

�nancial constraints.

That is, given that punishing strategy is uniquely �xed to the repeated play of static equilibrium,

�nancial constraints make collusive behaviors more di¢ cult to sustain.

4. Equilibrium with Increasing Average Cost and Patient Firms

In the previous section, we have seen that when �rms are patient, not all the average payo¤s

larger than the minimax payo¤ can be supported as an SPNE when n = 2, only those yielded

by a sequence of BF outputs (Proposition 1). This contrasts with the folk theorem of repeated

games which says that when �rms are su¢ ciently patient, arbitrary feasible payo¤s larger than the

minimax can be obtained as the average payo¤ of an SPNE of the repeated game. Thus a natural

question is to ask what kind of payo¤s can be supported as SPNE in our model. This section is

devoted to this task under the following additional assumption:

Assumption 1. All �rms have an increasing average cost, and for any subset S � N; there is

a unique xS = (xSi )i2S with x
S
i 6= 0 for all i 2 S such that �i(xS) = 0 for all i 2 S:

It is easy to �nd su¢ cient conditions on demand and cost functions such that Assumption 1

holds (for example Assumption 1 holds in Example 1). What this assumption requires is that �rms

do not be very di¤erent from each other. In what follows, whenever we use the notation xS for any

S � N we refer to the vector described in the Assumption 1.

Assumption 1 guarantees that the set of BF output pro�les is not empty. In particular, the output

pro�le xN is BF because for a �rm to make another one bankrupt, it has to increase output, but

since at xN its pro�t is zero and average cost is increasing, when this �rm increases output it gets

negative pro�ts.
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We now adapt the standard de�nition of a minimax payo¤ to the case in which outputs are

constrained to be BF: Let B�i be the set of outputs x�i such that there exists an output for �rm i

such that (xi;x�i) is BF (since the set of BF output pro�les is not empty, this set is well de�ned).

For each x�i 2 B�i; let Bi(x�i) = fxi j (xi;x�i) is BFg: The minimax BF payo¤ for �rm i is

de�ned as:

�im = min
x�i2B�i

max
xi2Bi(x�i)

�i(xi;x�i): (4.1)

The following lemma gives us a handier expression for the minimax BF payo¤ under Assumption

1. The proof is in the Appendix.

Lemma 2. Under Assumption 1, the minimax BF payo¤ is

�im = max
xi2[0;xNi ]

�i(xi;x
N
�i): (4.2)

In the following example we show the isopro�ts corresponding to the minimax BF payo¤ for two

�rms.

Example 4. Let us consider two �rms with payo¤s �1(x1; x2) = (10 � x1 � x2)x1 � x21; and

�2(x1; x2) = (10� x1 � x2)x2 � 1
5x
2
2. In Figure 3, the intersection of the linear solid lines provides

(xN1 ; x
N
2 ):The dash lines correspond to the best replies of the �rms and the curve lines corresponds

to the minimax BF isopro�ts.
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Note that the standard minimax, when applied to our model, yields a minimax payo¤ of zero

because �rms other than i could produce an output, call it �x�i, such that the best reply of i is

to produce zero (in Figure 3, �x�1 = 10 and �x�2 = 10). But �x�i might not ful�ll the de�nition

of minimax BF payo¤s because it might drive all �rms but i to bankruptcy . To highlight the

di¤erence between the standard minimax and our minimax BF we note the following:

Remark 1. Let i be a �rm such that AV Ci(0) � AV Cj(0) all j. Let �x be an output pro�le which

yields the standard minimax payo¤s to i. Then, all �rms other than i producing a positive output

at �x have negative pro�ts.

The Remark follows from the fact if �xj > 0, AV Cj(�xj) > AV Cj(0) � AV Ci(0) � p( �X) where
�X is the aggregate output associated to �x. The implication is that standard minimax punishes

severely the minimaxing �rms. In the minimax BF this extreme punishment is avoided. This

implies that the minimax BF payo¤ are strictly positive because under Assumption 1, xNi > 0 and

�i(x
N
i ;x

N
�i) = 0 imply that reducing x

N
i the payo¤ for �rm i becomes positive.

We are now ready to begin our study. We �rst consider the possibility of sustaining payo¤s less

than minimax BF payo¤s. The next proposition shows that, for a su¢ ciently large �; no SPNE of

the dynamic game can give any �rm a payo¤ lower than its minimax BF payo¤. The proof is in

the Appendix.

Proposition 5. Under Assumption 1, �0 2 (0; 1) exists such that for all � 2 (�0; 1), �i < �im

cannot be sustained in any SPNE.

It might appear surprising that Proposition 5 needs patient �rms. But when discount is heavy,

�rms may have little incentives to engage in predatory activities and allocations which are not BF

might be sustained. For instance if � = 0 only the payo¤s corresponding to the Cournot equilibrium

can be sustained as NE, but Cournot equilibrium outputs may be not BF , see Figure 3.

In the next example we show an implication of Proposition 5. For �rms that hardly discount

the future, a BF collusive outcome can not be sustained as SPNE:

Example 5. There are two �rms with linear inverse demand p(X) = maxf3 � X; 0g and cost

functions c1(x1) = x1 and c2(x2) = x2: To avoid bankruptcy �rm 1 is required to make at least

�0:25 pro�ts and �rm 2 is required to make at least �1 pro�ts. As we noted below the de�nition of a
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BF pro�le, we can de�ne a new pro�t function as ~�i(x) � �i(x)�vi and rede�ne BF with respect to

this new pro�t function. Disregarding the non negativity constraint in the inverse demand function

we have that ~�1(x1; x2) = (3 � x1 � x2)x1 � x1 + 0:25 and ~�2(x1; x2) = (3 � x1 � x2)x2 � x2 + 1.

Thus it is as if �rms had cost functions ~c1(x1) = x1� 0:25 and ~c2(x2) = x2� 1 so average costs are

increasing.

Let xN1 6= 0 and xN2 6= 0 be such that ~�1(xN1 ; x
N
2 ) = ~�2(x

N
1 ; x

N
2 ) = 0. These outputs amount to

xN1 = 0:5; x
N
2 = 2: Recall from Example 1 (see Lemma 3 in the Appendix for a formal proof), that

the set of BF output pro�les is

BF = f(x1; x2)=0 � x1 � 0:5; 0 � x2 � 2g: (4.3)

The minimax BF payo¤s for each �rm are:

�1m = max
x12[0;xN1 ]

~�1(xi;x
N
2 ) = ~�1(0; 2) = 0:25; (4.4)

�2m = max
x22[0;xN2 ]

~�2(x
N
1 ; x2) = ~�2(0:5; 0:75) = 1:562: (4.5)

The Cournot output pro�le is (xC1 ; x
C
2 ) = (2=3; 2=3): Note that the Cournot output pro�le is not

BF because xC1 > 0:5: Firm 2 can make �rm 1 bankrupt. The collusive outcome implies that

x1 + x2 = 1: If the output is equally shared among �rms the resulting output pro�le is BF with

associated payo¤s ~�1(0:5; 0:5) = 0:75 and ~�2(0:5; 0:5) = 1:5: Under this collusive outcome �rm 2

has a payo¤ below its minimax BF payo¤. If �rms discount the future very little, this collusive

outcome can not be supported as an SPNE of the dynamic game as we have shown in Proposition

5. For this particular example that will happen for a discount factor � � 0:8:

We are now ready to prove a folk theorem regarding BF allocations. We say that �i is an

individually rational BF payo¤ if �i > �im: An individually rational BF vector payo¤ (�i)i2N

is feasible if a BF output pro�le (x1; :::; xn) exists such that �i = �i(x1; x2; ::; xn) for all i 2 N: In

Figure 3 the BF output pro�les that give an individually rational BF payo¤ are the ones in the

area limited by the minimax BF isopro�ts.

Proposition 6. Suppose Assumption 1 holds. Let � = (�i)i2N be a feasible and individually

rational BF payo¤ vector. Then, �0 2 (0; 1) exists such that for all � 2 (�0; 1), � is the average

payo¤s in some SPNE.
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The proof is given by constructing an equilibrium adapting the one proposed by Fudenberg and

Maskin (1986) to this framework with BF considerations. Deviations of a �rm from the BF output

pro�le that gives payo¤s � are punished by �rms minimaxing each other in the BF set during �nite

periods. Details are given in the Appendix.7

When n > 2, we saw in Example 3 that payo¤s corresponding to outputs outside the BF set can

be sustained as SPNE. Our next result extends this example to the case where payo¤s are above

minimax BF payo¤s and deviations are punished not with Cournot output forever but with �rms

mutually minimaxing each other in the BF set for a certain period. For simplicity, we work out

the case of n = 3; even though our results can be extended to any n > 3 at the cost of introducing

some additional notation. We denote by �ijim the minimax BF payo¤ of �rm i when only �rms i

and j are in the market.

Proposition 7. Suppose Assumption 1 holds. Let (x1; x2; x3) be a non BF output pro�le such

that �i(x1; x2; x3) > �im for all i 2 f1; 2; 3g; and �i(x1; x2; x3) > �ijim for all i; j 2 f1; 2; 3g: Then,

�0 2 (0; 1) exists such that for all � 2 (�0; 1), � = (�i)i2f1;2;3g is the average payo¤s in some SPNE.

5. Final Remarks

In this paper we have developed a theory of dynamic competition in which �rms may make each

other bankrupt. We have shown that this theory is tractable and provides new insights into the

theory of dynamic games.

Our results, though, are obtained at the cost of making several simpli�cations to make the model

tractable. For instance, we did not consider coalitions of �rms in the de�nition of BF allocations

or re�nements of SPNE (such as renegotiation-proof) to get rid of some equilibria. It is likely

that these extensions would not qualitatively alter the nature of our results. However, other issues

neglected here might a¤ect our conclusions signi�cantly. Among these the following might be of

particular importance.

7The proofs of Propositions 6 and 7 rely on the idea of "mutual minimaxing" as a punishment, which is originally

proposed by Fudenberg and Maskin (1986) for only two players cases. In general, this method does not extend to

three or more players. For example, suppose n = 3. Then, there may exist no combination of action pro�les (a1, a2,

a3) such that (a2, a3) minimax player 1, (a1, a3) minimax player 2, and (a1, a3) minimax player 3. However, thanks

to Lemma 2 the existence of such an action pro�le (within BF pro�les) is always guaranteed in our model, which

enables players to minimax each other even when n is larger than 2. This dramatically simpli�es our proofs.
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Mixed strategies

Throughout the paper we have assumed that �rms only use pure strategies, but a good way of

avoiding bankruptcy might be to use mixed strategies as boxers use random movements to avoid

easy hits. We argue that when n = 2, if the outputs played in equilibrium involve a randomization

and one of these outputs is not BF , for � close enough to 1, the best strategy of the other �rm

consists of choosing an output that will make this �rm bankrupt. This is because sooner or later

the probability that the output which is not BF is played is close to 1 so this �rm will be ruined

and the predating �rm will enjoy monopoly pro�ts forever. Thus, in this case the BF set gives

us a indication of which type of outputs will arise in equilibria, regardless of what kind of strat-

egy is played by the agents. However, in other cases the introduction of mixed strategies might

substantially enlarge the set of allocations that might be supported as equilibria of the dynamic

game.

No accumulation

In this paper we focused on outputs that make other �rms bankrupt, but we did not consider the

other side of bankruptcy, namely the funds that might support or deter aggressive strategies (the

"deep pocket" argument). Our result when n = 2 might survive when accumulation is considered.

Indeed, suppose as a �rst approximation that in each period the �rms transfer an exogenous quantity

of their wealth to the next period. Then in each period we can de�ne a BF set that depends on

the wealth accumulated by each �rm. If in a period the output chosen by, say, �rm 1, is not BF ,

�rm 2 may get rid of �rm 1 and enjoy monopoly pro�ts forever. When � is su¢ ciently close to 1,

this is optimal for �rm 2. In other cases, accumulation of pro�ts might play an important role in

shaping the NE set as in the model of Rosenthal and Rubinstein (1984).8

Credit

If credit is given on the basis of past performance, the rede�nition of the BF set sketched in the

previous paragraph can be applied here and credits can be incorporated into the model. However,

if credit is given on the basis of future performance, we have a problem because future performance

also depends on credit (via the BF constraints), which makes this problem extremely complex.

This points to a deep conceptual problem about credit in oligopolistic markets where �rms might

8They characterize a subset of the Nash equilibria in the repeated game with no discounting (i.e., � = 1) where

each player regards ruin of the other player as the best possible outcome and his own ruin as the worst possible

outcome.
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be made bankrupt. This topic should be the subject of future research.

Entry

In this paper we assumed a given number of competitors. This implies that the disappearance

of a �rm does not bring a new one into the market. Of course this should not be taken literally.

What we mean is that if entry does not quickly follow, it makes sense, as a �rst approximation,

to analyze the model with a given number of �rms. For instance when n = 2 and demand and

costs are linear, ruining a �rm is a good investment even if monopoly lasts for one period (this

example is available under request). In other cases, though, the nature of equilibria will be altered

if, for instance, entry immediately follows the ruin of a competitor as in the model of Rosenthal

and Spady (1989).9

Buying Competitors

In our model, there is no option to buy a �rm. Sometimes it is argued that buying an opponent

may be a cheaper and safer strategy than ruining it. We do not deny that buying competitors

plays an important role in business practices. However, we contend that under the option of buying,

ruining a competitor is irrational. First, buying competitors may be forbidden by a regulatory body

because of anticompetitive e¤ects. Second, when the owner of a �rm sells it to competitors, this

does not stop her from creating a new �rm and �nancing it with the money received from selling the

old one. In other words, selling a �rm is not equivalent to a contract in which the owner commits

not to enter into a market again. Thus, bankruptcy may be the only credible way of getting rid

of a competitor. Finally, buying and ruining competitors may complement each other because the

acquisition value may depend on the aggressiveness of the buyer in the past; see Burns (1986) for

some evidence in the American tobacco industry. Thus, it seems that a better understanding of

the mechanism of ruin might help to further enhancement of our understanding of how the buying

mechanism works in this case.

Summing up, the model presented in this paper sheds some light on certain aspects of the

equilibrium in oligopolistic markets in which �rms may make each other bankrupt . We hope that

the insights obtained here can be used in further research in this area.

9They consider a prisoner�s dilemma in continuous time in a market with room for two �rms only. When a �rm

goes bankrupt, this �rm is immediately replaced by a new entrant. They show that some kind of predatory behavior

can arise in equilibrium.
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6. APPENDIX

Proof of Lemma 2. Since the payo¤ of �rm i is a¤ected by the aggregate output of the other

�rms but not by which �rm is producing it, the worst situation for �rm i in the BF set is the

one with the maximal aggregate output in the set B�i: In order to �nd this maximal aggregate

output we consider a superset of B�i (denoted by �B�i):We show that this superset is compact and

therefore the maximal aggregate output in the superset exists and we show that it is attained at

xN�i: Since x
N = (xNi ;x

N
�i) is BF; x

N
�i 2 B�i: Thus, the maximal aggregate output in the set B�i

is attained at xN�i:

We denote by �B�i the set of all ouputs; x�i, such that �rm i cannot make any other �rm bankrupt:

Note that the set �B�i might be di¤erent from the set B�i: This is because given x�i �rm i cannot

make any other �rm bankrupt, but a �rm di¤erent from i; say j; can make �rm k bankrupt: But,

�B�i is a superset of B�i because for all x�i 2 B�i there is xi such that (x�i; xi) is BF and

therefore �rm i cannot make any other �rm bankrupt.

Finally, note that the set �B�i is characterized by the following inequalities:

�j(�xi;x�i) � 0; for all j 6= i; (6.1)

where �xi = �xi(x�i) > 0 is such that

�i(�xi;x�i) = 0: (6.2)

Thus, the set �B�i is compact and therefore the maximal aggregate output in �B�i exists. We show

that the maximum is attained at xN�i. Let x�i 2 argmaxx�i2 �B�i X�i where X�i = X � xi.We

show �rst in Step 1 that X�i = XN
�i. Using this information we show in Step 2 that x�i = x

N
�i.

Step 1. Suppose X�i > XN
�i: Thus, there is at least one agent k 6= i such that xk > xNk :

Note �rst that X�i � XN ; because otherwise p(X�i) � AV Ck(xk) < p(XN ) � AV Ck(xNk ) = 0:

In this case, at x�i; agent i can make agent k bankrupt by producing zero, which contradicts that

x�i 2 �B�i: Thus, XN
�i < X�i � XN : Let x̂i be such that x̂i + X�i = XN : Since XN

�i < X�i;

then x̂i < xNi . By producing x̂i �rm i can make �rm k bankrupt and keep positive pro�ts because

p(x̂i + X�i) � AV Ck(xk) < p(XN ) � AV Ck(xNk ) = 0: Which again contradicts that x�i 2 �B�i:

Thus, X�i = XN
�i.

Step 2. Finally, we show that xj = xNj for all j 6= i: If this is not the case, there is at least one

�rm k such that xk > xNk . But then, �rm i by producing xNi can make �rm k bankrupt keeping
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non negative pro�ts for itself in contradiction with x�i 2 �B�i:

Thus, the maximum is reached at xN�i: Since (x
N
i ;x

N
�i) is BF , x

N
�i 2 B�i: Therefore, xN�i =

argmaxx�i2B�i X�i: Since Bi(x
N
�i) = [0; x

N
i ]; the minimax BF payo¤ is reduced to:

�im = max
xi2[0;xNi ]

�i(xi;x
N
�i); (6.3)

and the proof is completed.

To formally prove Proposition 5, we need the following lemmas.

Lemma 3. Suppose Assumption 1 holds and N = f1; 2g: Then the set of BF output pro�les is:

BF = f(x1; x2)=0 � x1 � xN1 ; 0 � x2 � xN2 g: (6.4)

Proof. Let us see �rst that an output pro�le (x1; x2) such that x1 � xN1 ; and x2 � xN2 is BF:

Note that at (x1; x2) pro�ts for both �rms are non negative. Trivially if one �rm is producing zero

output this �rm can no be made bankrupt by the other �rm. Suppose, without lost of generality,

that x2 6= 0: Let us see that �rm 1 can not make �rm 2 bankrupt (the same argument will

apply for �rm 2 against �rm 1): Let x̂1 be such that p(x̂1 + x2) � AV (x2) = 0: Since x2 � xN2 ;

p(xN1 + x
N
2 )�AV (xN2 ) = 0; and average cost is increasing, x̂1 + x2 � xN1 + xN2 ; which implies that

x̂1 � xN1 thus pro�ts for �rm 1 at (x̂1+x2) are non positive, which implies that �rm 1;by increasing

its output, can not make �rm 2 bankrtupt without making itself bankrupt also.

Finally, let (x1; x2) be an output pro�le such that both �rms have non negative pro�ts, and suppose

that x2 > xN2 . Let us see that �rm 1 by increasing its output can make �rm 2 bankrupt keeping

positive pro�ts for itself. Let x̂1 be such that x̂1 + x2 = xN1 + x
N
2 ; since x2 > x

N
2 ; x̂1 < x

N
1 ; thus,

at (x̂1; x2) �rm 1 has positive pro�ts. But since average cost is increasing and x2 > xN2 ; �rm 2 at

(x̂1; x2) is bankrupt.

Lemma 4. Let x = (x1; ::; xn) be such that all �rms have non negative pro�ts. Under Assumption

1, if X�i > XN
�i; �rm i can make some of the other �rms bankrupt.

Proof. Given that X�i > XN
�i; there is at least one agent k 6= i such that xk > xNk : If

X�i > XN ; then X > XN : But in this case, p(X) � AV Ck(xk) < p(XN ) � AV Ck(xNk ) = 0.

Which contradicts that at x �rms have non negative pro�ts. Thus, X�i � XN : Let x̂i be such that

x̂i + X�i = XN : Since XN
�i < X�i; then x̂i < xNi . By producing x̂i �rm i can bankrupt �rm k
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and keep non negative pro�ts because p(x̂i + X�i) � AV Ck(xk) < p(XN ) � AV Ck(xNk ) = 0; and

AV Ci(x̂i) < AV Ci(x
N
i ):

Lemma 5. Let S and T be two groups of �rms such that S � T; and let k 2 S: Under Assumption

1, the minimax BF payo¤ for �rm k when the set of �rms is S (denoted by �Skm) is larger than the

minimax BF payo¤ for �rm k when the set of �rms is T (denoted by �Tkm):

Proof. Let xS and xT as described in Assumption 1. Note �rst that XS < XT and since

AV Ck(x
T
k ) = p(XT ) < p(XS) = AV Ck(x

S
k ) and average cost is increasing, then x

T
k < xSk : Thus,

XS
�k < X

T
�k: Therefore,

�Tkm = max
xk2[0;xTk ]

�k(xk; X
T
�k) < max

xk2[0;xTk ]
�k(xk; X

S
�k) (6.5)

because pro�ts are decreasing in the sum of the outputs of the other �rms. And �nally, since

xTk < x
S
k ;

�Tkm = max
xk2[0;xTk ]

�k(xk; X
T
�k) < max

xk2[0;xSk ]
�k(xk; X

S
�k) = �

S
km: (6.6)

Thus, �Tkm < �
S
km:

Proof of Proposition 5. We prove the proposition by induction on the number of �rms. We

start by showing that the statement is true when there are only two �rms in the market, N = f1; 2g.

Let �i 2 (0; 1) be such �i�Mi = �im where �Mi is the monopoly pro�t and �im is the minimax BF

payo¤. Since �Mi > �im; �
i exists. Let �0 = maxi2N �i and let � 2 (�0; 1):

Note �rst that by Lemma 2, when N = f1; 2g the minimax BF payo¤ can be expressed as:

�im = min
xj2[0;xNj ]

max
xi2[0;xNi ]

�i(xi; xj): (6.7)

If xtj 2 [0; xNj ] for all t on and o¤ the equilibrium path, �rm i could have achieved at least �im

irrespective of � by choosing an output xti 2 [0; xNi ] (the standard argument in repeated games can

be applied here because in this case, as Lemma 3 shows, the output pro�le at each t is in the BF

set). Therefore, if �i < �im happens in equilibrium, xtj > xNj must hold for some t either on or

o¤ the equilibrium path. We show that if this is the case, the continuation payo¤ for i at t in

equilibrium; P ti ; must be such that P
t
i � ��Mi ; where �

M
i is the monopoly pro�t. Suppose that

P ti < ��
M
i ; since x

t
j > x

N
j , by the characterization of the BF set given in Lemma 3, �rm i can make

�rm j bankrupt retaining non-negative pro�ts, and can achieve a monopoly pro�t in every period
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from t + 1: Although the bankruptcy of �rm j has a cost at period t, the continuation payo¤ for

�rm i if it deviates from equilibrium will be at least ��Mi : However, if ��
M
i > P ti such a deviation

would be pro�table for �rm i and would contradict the notion that we are in equilibrium. Thus,

P ti � ��Mi : Since � 2 (�0; 1); P ti > �im: Thus, �i must exceed �im which concludes the proof for

n = 2.

Suppose that the proposition is true for n� 1 �rms. We show that it is true for n �rms.

By 4.2, �rm i could have achieved at least �im if Xt
�i � XN

�i for all t on and o¤ the equilibrium

path irrespective of �. Therefore, if �i < �im occurs in equilibrium, Xt
�i > XN

�i for some t,

and if this is the case, at t �rm i could make some other �rm bankrupt. Suppose, without lost

of generality, that �rm i can make �rm k bankrupt: The equilibrium strategies constitute a NE

in any subgame, in particular in the subgame in which all �rms but k survive. Let denote by

�N�ki a possible payo¤ that �rm i can obtain in the equilibrium of the subgame with all �rms

but �rm k: Let �N�ki be the set of all those possible payo¤s. Notice �rst that, by the induction

hypothesis, for each �rm k; there is �N�k such that for all � 2 (�N�k; 1); �N�ki � �N�kim ; where

�N�kim is the minimax BF payo¤ of �rm i when the �rms in the market are N 8fkg. By Lemma 5,

�N�kim > �Nim: Let �
i 2 (0; 1) be such that �i�N�kim = �Nim; and let �

0 = max(maxk �
N�k;maxi �

i):

Let � 2 (�0; 1):Let us see that the continuation payo¤ for i at t in equilibrium; P ti ; must be such

that P ti � ��N�ki for some �N�ki 2 �N�ki . Suppose that P ti < ��N�ki for all �N�ki 2 �N�ki : If

this is the case, �rm i can deviate in period t making �rm k bankrupt and retaining non-negative

pro�ts and conforming with the initial strategy thereafter. Thus, �rm i can achieve �N�ki pro�ts

in every period from t + 1:Under this situation, the continuation payo¤ for �rm i will be greater

than ��N�ki : However, ��N�ki > P ti , which contradicts the notion that we are in equilibrium. Thus,

P ti � ��N�ki for some �N�ki 2 �N�ki : By the induction hypothesis, for � 2 (�0; 1); �N�ki � �N�kim :

Thus, P ti � ��N�ki � ��N�kim > �i�N�kim = �Nim; which implies that �i must exceed �
N
im at some

point which concludes the proof.

Proof of Proposition 6. The proof is given by constructing an equilibrium which is originally

proposed by Fudenberg and Maskin (1986). Let (�i)i2N be feasible and individually rational BF

payo¤ vector. By the de�nition of feasibility, there is a BF output pro�le (x1; ::; xn) such that

�i = �i(x1; ::; xn) for i 2 N: (6.8)

Suppose each �rm i 2 N produces this xi in each period if no deviation has occurred, but all i 2 N
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produces xNi , for T periods once one of them unilaterally deviates from the equilibrium path. If

no one deviates during these T periods, then �rms go back to the original path. Otherwise, if one

of them deviates, then �rms restart this phase for T more periods. We prove that this strategy

actually constitutes an SPNE.

First consider a deviation from the equilibrium path. Suppose �rm i produces x0i 6= xi in some

period, say period t. By the one-stage-deviation principle (e.g. Fudenberg and Tirole, 1991, p.110),

a deviation is pro�table if and only if �rm i could pro�t by deviating from the original strategy in

period t only and conforming thereafter. Therefore, �rm i can bene�t by deviation if and only if

x0i exists such that

(1� �)�i(x0i;x�i) + (1� �)(� + ::+ �T )�i(xNi ;xN�i) + �T+1�i > �i; (6.9)

or equivalently,

(1� �)�i(x0i;x�i) + �T+1�i > (1� �)(1 + � + :::+ �T )�i + �T+1�i; (6.10)

which it holds whenever:

(1� �)f(�i(x0i;x�i)� �i)� (� + :::+ �T )�ig > 0: (6.11)

Let �i = maxx0i �i(x
0
i;x�i)� �i and choose T such that

�i < T�i. (6.12)

Note that the left hand side of (6.11) is weakly less than

(1� �)f�i � (� + :::+ �T )�ig. (6.13)

This term is non-positive when � is close to 1. Therefore, (6.11) cannot be satis�ed for such T .

By the same argument as above, �rm i can bene�t by deviating from the mutual minmax phase if

and only if x00i exists such that

(1� �)�i(x00i ;xN�i) + (1� �)(� + :::+ �T )�i(xNi ;xN�i) + �T+1�i

> (1� �)(1 + � + :::+ �T�1)�i(xNi ;xN�i) + �T�i, (6.14)

which can be written as:

�i(x
00
i ;x

N
�i) > �

T�i: (6.15)
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Note that �i(x00i ;x
N
�i) � maxxi2[0;x̂i] �i(xi;xN�i) = �im: Since �i > �im by assumption. This implies

that (6.15) never holds when � is close to 1.

Thus, both on and o¤ the equilibrium paths, there is no pro�table deviation when � is su¢ ciently

close to 1. Since � is an arbitrary feasible and individually rational BF payo¤ vector, the proof is

complete.

Proof of Proposition 7. Suppose, without loss of generality, that only �rm 3 can be made

bankrupt. Suppose each �rm i 2 f1; 2; 3g produces xi in each period but if one of then deviates

such that no �rm is bankrupt, then �rms start to produce xNi for T periods . If no one deviates

during these T periods, then �rms go back to the original path. Otherwise, if one of them deviates

in one of these T periods, then �rms restart this phase for T more periods. If one �rm deviates by

making �rm 3 bankrupt, then �rm 1 and 2 chose xSi , S = f1; 2g for T periods. If no one deviates

during this phase, then �rms chose (�x1; �x2) a BF output pro�le in the market with those two �rms

such �i(x1; x2; x3) > �i(�x1; �x2) > �
ij
im: If one of them deviates from this phase, then �rms restart

this phase for T more periods.

We show that this strategy actually constitutes an SPNE.

First consider the deviation on the equilibrium path when no �rm is made bankrupt. Suppose �rm

i produces x0i 6= xi in some period, say period t such that this �rm does not make any other �rm

bankrupt with this production level. By the one-stage-deviation principle, deviation is pro�table if

and only if �rm i could pro�t by deviating from the original strategy in period t only and conforming

thereafter. Therefore, �rm i can bene�t by deviation if and only if x0i exists such that

(1� �)�i(x0i; xj ; xk) + (1� �)(� + ::+ �T )�i(xNi ; xNj ; xNk ) + �T+1�i > �i; (6.16)

or equivalently

(1� �)�i(x0i; xj ; xk) + �T+1�i > (1� �)(1 + � + :::+ �T )�i + �T+1�i; (6.17)

which it holds whenever

(1� �)f(�i(x0i; xj ; xk)� �i)� (� + :::+ �T )�ig > 0: (6.18)

Let �i = maxx0i �i(x
0
i; xj ; xk)� �i and choose T such that

�i < T�i. (6.19)
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Note that the left hand side of (6.18) is weakly less than

(1� �)f�i � (� + :::+ �T )�ig. (6.20)

This term is non-positive when � is close to 1. Therefore, (6.18) cannot be satis�ed for such T .

Deviations from the mutual minmax phase cannot make any �rm bankrupt because (xN1 ; x
N
2 ; x

N
3 )

is BF: Thus, by the same argument as above, �rm i can bene�t by deviating from the mutual

minmax phase if and only x00i exits such that

(1� �)�i(x00i ; xNj ; xNk ) + (1� �)(� + :::+ �T )�i(xNi ; xNj ; xNk ) + �T+1�i

> (1� �)(1 + � + :::+ �T�1)�i(xNi ; xNj ; xNk ) + �T�i, (6.21)

which can be written as:

�i(x
00
i ; x

N
j ; x

N
k ) > �

T�i: (6.22)

Note that �i(x00i ; x
N
j ; x

N
k ) � maxxi2[0;x̂i] �i(xi; xNj ; xNk ) = �im: Since �i > �im by assumption. This

implies that (6.22) never holds when � is close to 1.

Now, consider deviations whereby one �rm can make �rm 3 bankrupt. Suppose this �rm is �rm 1.

Firm 1 can bene�t by deviating if and only if x01 exits that make �rm 3 bankrupt and such that

(1� �)�1(x01; x2; x3) + (1� �)(� + ::+ �T )�1(xS1 ; xS2 ) + �T+1�1(�x1; �x2)

> �i = (1� �)(1 + � + :::+ �T )�i + �T+1�i: (6.23)

Since �i > �1(�x1; �x2): The above inequality is true if and only if

(1� �)�1(x01; x2; x3) + (1� �)(� + ::+ �T )�1(xS1 ; xS2 )

> (1� �)(1 + � + :::+ �T )�i; (6.24)

which it holds whenever

(1� �)f(�i(x0i; xj ; xk)� �i)� (� + :::+ �T )�ig > 0: (6.25)

However, causing bankruptcy to a �rm implies an increase in output and since average cost is

increasing, �i(x0i; xj ; xk)� �i < 0: Thus, the above inequality can never hold.
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Deviations from the mutual minmax phase with two �rms cannot make any �rm bankrupt because

(xS1 ; x
S
2 ) is BF: Thus, by the same argument as above, �rm 1 (the same argument applies to �rm

2) can bene�t by deviating from the mutual minmax phase if and only if x00i exists such that

(1� �)�1(x001; xS2 ) + (1� �)(� + :::+ �T )�1(xS1 ; xS2 ) + �T+1�1(�x1; �x2)

> (1� �)(1 + � + :::+ �T�1)�1(xS1 ; xS2 ) + �T�1(�x1; �x2): (6.26)

The previous inequality can be written as:

�1(x
00
1; x

S
2 ) > �

T�1(�x1; �x2): (6.27)

Note that �1(x00i ; x
S
2 ) � maxx12[0;xS1 ]

�1(x1; x
S
2 ) = �

S
1m: Since �1(�x1; �x2) > �S1m, (6.27) never holds

when � is closed to one.

Thus, both on and o¤ the equilibrium paths, there is no pro�table deviation when � is su¢ ciently

close to 1.
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